219 research outputs found

    Practical Minimum Cut Algorithms

    Full text link
    The minimum cut problem for an undirected edge-weighted graph asks us to divide its set of nodes into two blocks while minimizing the weight sum of the cut edges. Here, we introduce a linear-time algorithm to compute near-minimum cuts. Our algorithm is based on cluster contraction using label propagation and Padberg and Rinaldi's contraction heuristics [SIAM Review, 1991]. We give both sequential and shared-memory parallel implementations of our algorithm. Extensive experiments on both real-world and generated instances show that our algorithm finds the optimal cut on nearly all instances significantly faster than other state-of-the-art algorithms while our error rate is lower than that of other heuristic algorithms. In addition, our parallel algorithm shows good scalability

    Algorithms for Mapping Parallel Processes onto Grid and Torus Architectures

    Full text link
    Static mapping is the assignment of parallel processes to the processing elements (PEs) of a parallel system, where the assignment does not change during the application's lifetime. In our scenario we model an application's computations and their dependencies by an application graph. This graph is first partitioned into (nearly) equally sized blocks. These blocks need to communicate at block boundaries. To assign the processes to PEs, our goal is to compute a communication-efficient bijective mapping between the blocks and the PEs. This approach of partitioning followed by bijective mapping has many degrees of freedom. Thus, users and developers of parallel applications need to know more about which choices work for which application graphs and which parallel architectures. To this end, we not only develop new mapping algorithms (derived from known greedy methods). We also perform extensive experiments involving different classes of application graphs (meshes and complex networks), architectures of parallel computers (grids and tori), as well as different partitioners and mapping algorithms. Surprisingly, the quality of the partitions, unless very poor, has little influence on the quality of the mapping. More importantly, one of our new mapping algorithms always yields the best results in terms of the quality measure maximum congestion when the application graphs are complex networks. In case of meshes as application graphs, this mapping algorithm always leads in terms of maximum congestion AND maximum dilation, another common quality measure.Comment: Accepted at PDP-201

    ILP-based Local Search for Graph Partitioning

    Get PDF
    Computing high-quality graph partitions is a challenging problem with numerous applications. In this paper, we present a novel meta-heuristic for the balanced graph partitioning problem. Our approach is based on integer linear programs that solve the partitioning problem to optimality. However, since those programs typically do not scale to large inputs, we adapt them to heuristically improve a given partition. We do so by defining a much smaller model that allows us to use symmetry breaking and other techniques that make the approach scalable. For example, in Walshaw\u27s well-known benchmark tables we are able to improve roughly half of all entries when the number of blocks is high

    Cavity-enhanced Raman Microscopy of Individual Carbon Nanotubes

    Get PDF
    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics

    Bloom Filters for ReduceBy, GroupBy and Join in Thrill

    Get PDF

    Finding All Global Minimum Cuts in Practice

    Get PDF
    We present a practically efficient algorithm that finds all global minimum cuts in huge undirected graphs. Our algorithm uses a multitude of kernelization rules to reduce the graph to a small equivalent instance and then finds all minimum cuts using an optimized version of the algorithm of Nagamochi, Nakao and Ibaraki. In shared memory we are able to find all minimum cuts of graphs with up to billions of edges and millions of minimum cuts in a few minutes. We also give a new linear time algorithm to find the most balanced minimum cuts given as input the representation of all minimum cuts
    • …
    corecore